Using the GCE Data Toolbox to automate environmental data processing and produce EML-described data packages for the EDI repository

Wade Sheldon
Georgia Coastal Ecosystems LTER
The GCE Data Toolbox is unique in several ways:
- Software optimized for LTER-scale, end-to-end environmental Data Management
- Rare example of LTER site-developed CI released as community tool
- Multiple modes of operation – automated workflows to PI/student use
- Unusually long history – 18 years of production use and development

Webinar Overview:
- Short history of motivation and development process
- Walk-through of key features for data processing, Q/C, publishing
- Implementation and support resources
- Quick demo of importing, checking, publishing as EML data package
Motivation

- Georgia Coastal Ecosystems LTER started in 2000
 - Large data collection effort planned (cruises, sensors, lab analyses, marsh surveys, …)
 - Minimal IM staff (0.75 FTE for **ALL** IT/IM support)
 - Needed to standardize and automate tabular data processing, quality control, documentation
- No ready-to-use software for LTER data management
 - Lots of great papers and reports, no tools to download
 - Relational databases emerging – site-specific, complex, require network
- Developed custom data management framework in MATLAB

Benefits
- Experienced using MATLAB for automating data processing, GUIs
- Broadly used at GCE – better code-reuse potential than database/web solution
- Cross platform code and data (Windows, Mac, Linux)
- Good scalability

Costs
- Commercial licensed source, limiting distribution (but often site-licensed)
Toolbox Influences

- Approach influenced by highly successful ‘Fluorescence Toolbox’
 - Self-describing data model combining data, metadata, settings, Q/C
 - API for automation via workflow
 - GUI applications for high level use
- Model/API simplified software dev
- Automated processing and GUI tools were powerful research accelerators
- Opened up new visual data analysis approaches, major pubs
- Very popular with PIs and students alike

https://gce-svn.marsci.uga.edu/trac/FL_Toolbox/
Toolbox Development

- Requirements based on 1995 ESA FLED report, Michener 2000

- Designed generalized tabular data model
 - Any number of numeric and text variables
 - Attribute metadata for each variable (name, units, description, data type, variable type, precision, ...)
 - Structured documentation metadata for dynamic updating, formatting
 - Versioning and processing history info (lineage)
 - Quality control rules for every variable, qualifier flags for every value
Data Model (GCE Data Structure)
Toolbox Development

- Developed MATLAB software library ("toolbox")
 - Utility functions to abstract low-level operations (API)
 - Create structure, add/delete columns, copy/insert/delete rows
 - Extract, sort, query, update data, update flags
 - Analytical functions for high-level operations
 - Statistics, visualizations, geographic & date/time transformations
 - Unit inter-conversions, aggregation/re-sampling, joining data sets
 - GUI interface functions to simplify using the toolbox
 - All functions use metadata, data introspection to auto-parameterize and automate operations (semantic processing)
- Indexing and search support (and GUI search engine)
- Data harvest management tools
Command Line Interface (API)
GUI Application Interface
GUI Application Interface

- Primary GUI tool is the Data Set Editor
 - Displays attribute list, fields for viewing/editing attribute metadata
 - Extensive menu system
 - File menu for import/export operations
 - Edit menu for viewing/editing data table, performing data set operations
 - Metadata menu for managing/viewing data set metadata
 - Tools menu for launching tools, plotting
 - Misc menu for managing templates, etc
 - Window menu for multi-data set views
 - Help menu for online documentation
- Compact control panel for data set
Importing Data

- **Generic parsers**
 - Delimited text (CSV, space, tab)
 - MATLAB variables (arrays, matrices, structs)

- **Specialized parsers**
 - Vendor-specific logger files
 - Campbell Scientific Instruments (tables, arrays)
 - Sea-Bird CTD, sondes
 - Others (YSI, Hobo, Schlumberger, OSIL, ...)

- **Network data sources**
 - Federal databases (USGS NWIS, NOAA NCDC/GHCN, NOAA HADS)
 - LTER ClimDB/HydroDB
 - EML repositories (LTER Data Portal/EDI, DataONE, KNB)
 - SQL database queries (JDBC)
 - Data Turbine servers

- **Custom parsers can be added**
Example – Adding a Parser
Adding/Importing Metadata

- Metadata entry is time-consuming (and tedious)!
 - Metadata capture, re-use strongly emphasized
 - Metadata auto-generated whenever possible
- Many pathways for building Metadata
 - Metadata can be imported along with data
 - Logger file headers (Campbell, Sea-bird)
 - Station, parameter information from USGS, NOAA
 - Tokenized headers from Data Submission Template
 - Metadata imported from other GCE Data Toolbox data structures
 - Metadata imported from data repository (EML/XML)
 - Metadata added from user-defined “Templates”
 - Column (attribute) metadata matched to “variables”
 - Boilerplate documentation
 - GUI tool for creating/managing templates
Adding/Importing Metadata

Metadata templates in a software interface for data management.

- **Template Editor**
 - **Metadata Templates**
 - CO-OPS_Fort_Pulaski
 - CTD_Profile
 - GCE_AquaTroll_Logger
 - GCE_Barco_Diver
 - GCE_Cera_Diver
 - GCE_CTD_Diver
 - GCE_Flux_Tower_Fluxes
 - GCE_Flux_Tower_Time_Series
 - GCE_Hammond_Surveys
 - GCE_Hobo_Tidbit
 - GCE_Hobo_Tidbit_Hammock
 - GCE_Hydrolab_Diver
 - GCE_MiniTroll_Diver
 - GCE_Plant_Biomass
 - GCE_Sonde
 - GCE_Sonde_C1
 - GCE_Sonde_C2
 - GCE_Sonde_High_Salinity
 - Harvest_Demo
 - LTER_ClimDB
 - LTER_ClimDB_GCE
 - NDCDC_Baxley
 - NDCDC_Brunswick
 - NDCDC_GHOND
 - NDCDC_GHOND_Baxley
 - NDCDC_GHOND_Brunswick
 - NDCDC_GHOND_Glennville
 - NDCDC_GHOND_Glennville

- **Metadata Editor**
 - **Metadata Contents**
 - **Field**: Abstract
 - **Contents**: Air temperature, relative humidity, barometric pressure, precipitation, photosynthetically-available and total solar radiation, and wind speed and direction were measured using an automated Campbell Scientific Instruments climate station installed at Bird Landing on Jepson Island, Georgia. Observations were logged at 15 minute intervals throughout the study period. The sensors were mounted on a 10m aluminum tower, with wind sensors secured at the top, light sensors at approximately 6m, and other sensors at 2-3m to minimize interference from the surrounding landscape. This climate station was jointly operated by the Jepson Island National Ecosystem Research Station, the Georgia Coastal Ecosystem Living shoreline project, and the University of Georgia Marine Institute.

Note: use | characters to force line breaks in the formatted metadata.
Q/C Analysis Framework

- **Programmatic Q/C Analysis**
 - “Rules” (i.e. criteria) define conditions in which values should be flagged
 - Unlimited Q/C rules for each variable
 - Rules evaluated when data loaded and when data or rules change
 - Rules predefined in metadata templates to automate Q/C on import

- **Interactive Q/C Analysis and Revision**
 - Qualifiers can be assigned/cleared visually on data plots with the mouse
 - Qualifiers can be propagated to dependent columns
 - Qualifiers can be removed or edited (search/replace) if standards change

- **Automatic Documentation of Q/C Steps**
 - Q/C operations (including revisions) logged to processing lineage
 - Data anomalies reports can be auto-generated and annotated

- **Data analysis, synthesis tools Q/C-aware**
 - Qualified values can be filtered, summarized, visualized during analysis
 - Statistics about missing/qualified values tabulated, used to qualify derived data
Q/C Analysis Framework
Example – CTD mooring

Data from Sea-Bird Electronics 37-SM MicroCAT sonde S/N 3746 deployed at the Altamaha River hydrographic datalogger deployment near Rockedundy Island from 10-Jun-2011 to 08-Sep-2011

flag_no_value_change(col_Salinity, 0.3, 0.3, 3) = ‘F’

col_Depth < 0.2 = ‘Q’

col_Depth < 0 = ‘I’
Example – CTD mooring

Data from Sea-Bird Electronics 37-SM MicroCAT sonde S/N 3746 deployed at the Altamaha River hydrographic datalogger deployment near Rockdedundy Island from 10-Jun-2011 to 08-Sep-2011

- flag_novaluechange(col_Salinity, 0.3, 0.3, 3) = 'F'
- col_Depth < 0 = 'I'
- col_Depth < 0.2 = 'Q'

(flag_no_value, col_Depth < 0.2 = 'Q', col_Depth < 0 = 'I')
Data Management Cycle

Import Filter + Metadata Template (One Step)
Calculated columns can be generated using mathematical formulas, functions.

Data can be gap-filled, drift-corrected.

Derived data sets can be created by filtering values or refactoring data table structure (e.g. combining or splitting columns).

Data can be re-sampled or summarized by aggregation, binning and date/time scaling.

Multiple data sets can be combined by merging (union) and joining on key columns.

All derived data contain complete metadata describing the entire processing history.

Q/C rules can be generated for derived data columns automatically based on number or percent missing/flagged values.

Post-Processing and Synthesis

![Data/Time Interval Statistics](image.png)

- **Available Columns**
 - Instrument (none)
 - Pump (none)
 - Conductivity (S/cm)
 - Pressure (dbar)
 - Depth (m)
 - Spine (kg/m²)
 - Calibration (none)

- **Column Selections**

- **Calculate Statistics For**
 - Temperature (°C)

- **Statistics**
 - Automatic (based on numbers and variable type)
Example – Date/Time Aggregation
Data and metadata can be exported in many formats:
- Text, MATLAB, XML/KML/HTML
- Inserted into RDBMS tables

Data can be refactored and published in CUAHSI ODM database, Hydro-server

Data can be displayed on MATLAB-generated web pages and dashboards

EML-described data packages can be generated/published in data archives:
- EDI/PASTA
- DataONE Member Nodes (e.g. KNB)
- DEIMS (potentially)
Archive/Publish Data

- Export EML Data Packages for EDI

<table>
<thead>
<tr>
<th>Export EML Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export Path</td>
</tr>
<tr>
<td>File Name</td>
</tr>
<tr>
<td>Entity Name</td>
</tr>
<tr>
<td>Data URL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Format</th>
<th>Flag Option</th>
<th>Text flag columns (data/calc + others)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV (spreadsheet)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header</th>
<th>DataTable Only</th>
<th>Package ID</th>
<th>AuthSystem</th>
<th>Public Access</th>
<th>Date Format</th>
<th>Missing Char/NaN</th>
<th>Map Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-line header (title, column names, units, variable types)</td>
<td></td>
<td>knb-iter-gce.999.1</td>
<td>knb</td>
<td></td>
<td>nys.mm.dd HH.MM.SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cancel | Close dialog after performing export? | Proceed |
Automation – Batch Processing

- Entire directories of raw data files can be processed at once using an import filter and metadata template.
- Multiple GCE Data Structure files in a directory can be batch-converted to TXT, CSV.
- Multiple files can be merged via metadata-based union to create an integrated data set.
- All directories containing GCE Data Structures can be indexed and searched, then merged, joined and exported.
Automation – Data Harvesting

Harvest Manager

Workflow

Data Source Import Data Add / Import Metadata Q/C Analysis Post-Process Synthesis Archive / Publish

Products
Reports
Example – Real-time Harvesting
Key Concepts

- Operations performed in context of a "dataset"
 - Passing data columns to a tool transports metadata as well
 - Dataset metadata used to guide transformation, plotting, analysis
 - Metadata used to auto-parameterize functions

- Workflow steps generate new, complete datasets
 - Each step along a workflow results in a complete data set with metadata
 - Intermediate datasets can be saved or overwritten in workflows

- Processing history ("lineage") tracked
 - Each tool logs operations by date/time
 - Data revisions, deletions, flagging captured at user-specified detail
 - Lineage reported in metadata

- Metadata are "live", and updated automatically
 - Data column metadata and data revisions
 - Calculations and unit conversions
 - Code definitions
 - Metadata merged when multiple data sets are joined
Implementation Scenarios

- **End-to-End Processing (logger-to-scientist)**
 - Acquire raw data from logger, file system, network
 - Assign metadata from template or forms to validate and flag data
 - Review data and fine-tune flag assignments
 - Generate distribution files & plots, archive/publish data
 - Scientists can use toolbox on desktop to analyze, integrate data

- **Data Processing and Q/C**
 - Acquire, validate and flag raw data (on demand or timed/triggered)
 - Upload values/flags to IMS for distribution (e.g. local IMS, DEIMS, ODM)
 - Upload processed data files and metadata/EML to EDI

- **Workflow Step**
 - Call toolbox from other software as part of workflow (tool-chaining)
 - Use toolbox as middleware (e.g. Data Turbine & ODM, Kepler, …)
Toolbox Milestones

- 2001 – in production, released to GCE personnel
- 2002 – first public release (compiled code only)
- 2003 – USGS harvesting service for ClimDB/HydroDB launched
- 2005 – added “Search Engine” for local data management
- 2009 – first supported cross-site use (CWT)
- 2010 – established SVN, Wiki (Trac), released as open source (GPL)
- **2012** – ARRA funding for training, enhancement; EML import support
- **2013** – CUAHSI ODM support, Data Turbine support, LNO sensor DM training
- 2014 – EML data package export support
- 2018 – over 4100 registered downloads, in use at >8 LTER sites (harvesters at GCE, CWT, AND, HBR, NWT)
- **2019** – LTER/EDI GitHub fork? LTER working group? virtual training?
Resources

- MATLAB
 - Website: http://www.mathworks.com/products/matlab/
 - Version R13 (2002) or higher required (full or student version)

- Software Distribution
 - Website: https://gce-svn.marsci.uga.edu/trac/GCE_Toolbox
 - Documentation, Tutorial, FAQ
 - Distribution Downloads (stable, beta)
 - Bug reporting (tickets)
 - SVN: https://gce-svn.marsci.uga.edu/svn/GCE_Toolbox/trunk
 - Code is open source (GPLv3) and cross-platform

- User Support
 - Peer-to-peer model
 - Email: gcetoolbox-l@listserv.uga.edu (http://www.listserv.uga.edu/)