GCE Data Toolbox for MATLAB

Wade Sheldon

Georgia Coastal Ecosystems LTER University of Georgia

John Chamblee & Richard Cary

Coweeta LTER

University of Georgia

Background & Motivation

- Georgia Coastal Ecosystems LTER project started in Sept 2000
 - Large and varied data collection effort
 - NSF & LTER require data and metadata archiving, sharing
 - Needed to standardize data processing, quality control, documentation
- No ready-to-use software for LTER data management
 - Lots of great papers and reports, no tools to download
 - Most LTER sites were using "flat files" limiting
 - Relational databases emerging proprietary, complex, require constant network access
- Developed custom data management framework using MATLAB
 - Experienced using MATLAB for automating data processing, GUIs
 - Better code-reuse potential than database/web solution
 - Best compromise: file-based but supports fully dynamic operations

What is MATLAB?

• From Mathworks (www.mathworks.com):

"MATLAB is a programming environment for algorithm development, data analysis, visualization, and numerical computation."

Benefits

- Ubiquitous in engineering and many science branches
- Rapid development with lots of pre-built functionality, Java integration
- Code, GUIs and data formats multi-platform (Windows, *nix, Mac OS/x)
- Stable: good support and backward compatibility (~30 year history)
- Scalable (netbook to HPC cluster) good performance with huge data sets
- Broad I/O support (serial ports to web services)

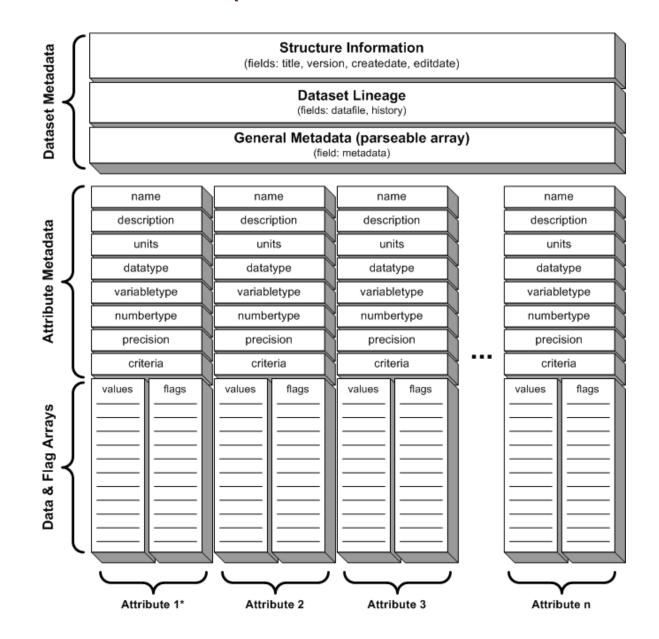
Costs

- Commercial ("licensed source") limits flexibility, costs \$-\$\$\$
- Some programming required for maximum use

Toolbox Development

Used ESA's "FLED" report to guide approach

 Gross, Katherine L. and Catherine E. Pake. 1995. Final report of the Ecological Society of America Committee on the Future of Long-term Ecological Data (FLED). Volume I: Text of the Report. The Ecological Society of America, Washington, D.C.

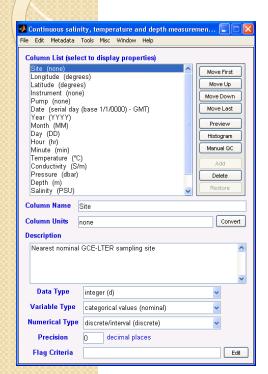

Identified information storage requirements

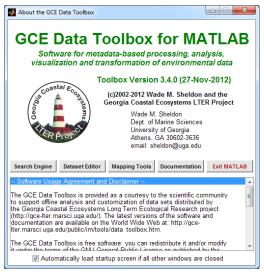
- Any number of numeric and text variables
- Attribute metadata for each variable (name, units, description, type, precision, ...)
- Structured documentation metadata for dynamic updating, formatting
- Versioning and processing history info (lineage)
- Quality control rules for every variable, qualifier flags for every value

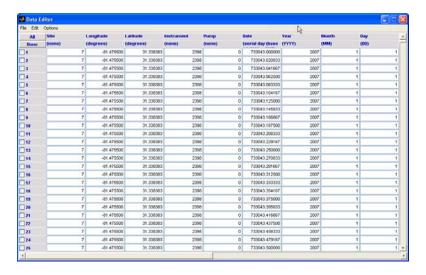
Designed data model: "GCE Data Structure"

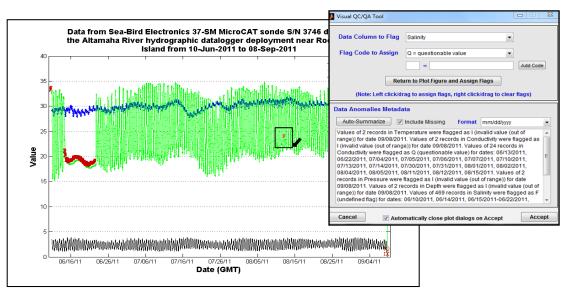
- MATLAB "struct" array with named fields for each class of information
- Detailed specifications for allowed content in each field
- · "Virtual table" design based on matched arrays for linking attribute metadata, data, flags
- Same philosophy as relational database table plus additional descriptors

Data Model (GCE Data Structure)

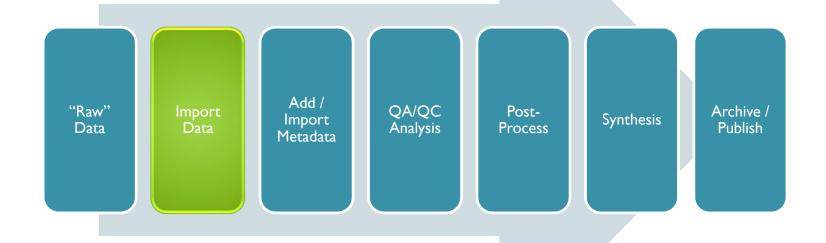

Toolbox Development

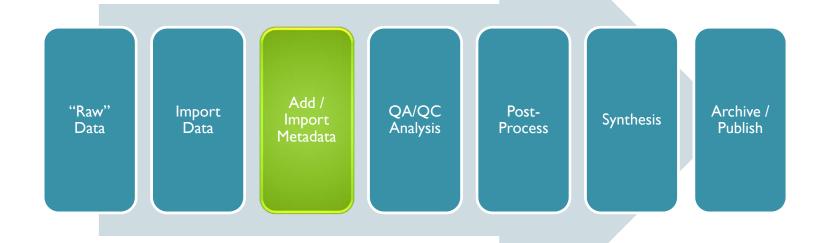

- Developed MATLAB software library to work with data structures
 - Utility functions to abstract low-level operations (API)
 - Create structure, add/delete columns, copy/insert/delete rows
 - Extract, sort, query, update data, update flags
 - Analytical functions for high-level operations
 - Statistics, visualizations, geographic & date/time transformations
 - Unit inter-conversions, aggregation/re-sampling, joining data sets
 - GUI interface functions to simplify using the toolbox
 - All functions use metadata, data introspection to auto-parameterize and automate operations (semantic processing)
- Developed indexing and search support (and GUI search engine)
- Developing data harvest management tools


Command Line Interface (API)


```
🥠 МАТLAB 7.9.0 (R2009b)
<u>File Edit Debug Desktop Window Help</u>
                                                                                                        ▼ .... ⓑ
🎦 👸 🤚 🖺 🥙 💌 🚵 📆 🗐 🔞 | Ourrent Folder: c:\userfiles\wade\svn_repositories\gce_toolbox
 Shortcuts 1 How to Add 1 What's New 4 GCE Toolbox
   >> [s,msg] = fetch_usgs('02226000','realtime',60,'USGS_Doctortown');
   >> s
            version: 'GCE Data Structure 1.1 (29-Mar-2001)'
              title: 'Data from USGS Station 02226000 (ALTAMAHA RIVER AT DOCTORTOWN, GA) for 05-Feb-2010 through 06-Apr-2010'
           metadata: {87x3 cell}
           datafile: {'usgs_02226000_realtime_20100406_1130_mod.txt' [5797]}
         createdate: '06-Apr-2010 11:30:48'
           editdate: '06-Apr-2010 11:30:50'
            history: {16x2 cell}
              name: {lx12 cel1}
              units: {'none' 'none' 'none' 'serial day (base 1/1/0000) - GMT' 'YYYY' 'MM' 'DD' 'hr' 'min' 'm' 'm'3/sec' 'mm'}
        description: {1x12 cel1}
           datatype: {'s' 's' 'd' 'f' 'd' 'd' 'd' 'd' 'f' 'f' 'f'}
        variabletype: {lx12 cel1}
         numbertype: {1x12 cel1}
          precision: [0 0 0 8 0 0 0 0 0 2 1 2]
             values: {lx12 cel1}
           criteria: {lx12 cel1}
              >> listcols(s)
    ans =
    1: Agency -- string
     2: StationID -- string
    3: Provisional -- integer
     4: Date (serial day (base 1/1/0000) - GMT) -- floating-point
     5: Year (YYYY) -- integer
     6: Month (MM) -- integer
     7: Day (DD) -- integer
    8: Hour (hr) -- integer
    9: Minute (min) -- integer
    10: GageHeight (m) -- floating-point
    11: Discharge (m^3/sec) -- floating-point
    12: Precipitation (mm) -- floating-point
    >> dt = extract(s,'Date'); discharge = extract(s,'Discharge');
    >> whos
     Name
                                       Bytes Class
                                                       Attributes
     ans
                     12x63
                                       1512 char
                    5797x1
                                       46376 double
     discharge
     dt
                    5797x1
                                       46376 double
     msg
                      0x0
                                          0 char
                      1x1
                                     1346932 struct
     3
 fx >>
📣 Start
```

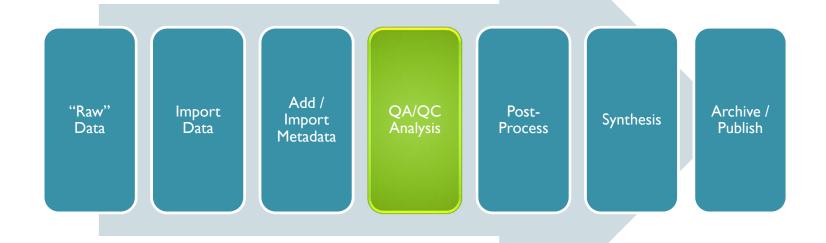
GUI Interface (Application)




Data Management Cycle

Importing Data

- Generic parsers
 - Delimited text (CSV, space, tab)
 - MATLAB variables (arrays, structs)
- Specialized parsers
 - Vendor-specific logger files
 - · Campbell (tables, arrays)
 - Sea-Bird CTD, sondes
 - Others (Hobo, Schlumberger, OSIL, ...)
 - Network data sources
 - SQL database queries (JDBC)
 - Federal databases (USGS NWIS, NOAA NCDC, NOAA HADS)
 - LTER ClimDB/HydroDB
 - EML repositories (LTER NIS/PASTA)
 - Data Turbine servers
- Custom parsers can be added


Data Management Cycle

Adding/Importing Metadata

- Metadata imported along with data
 - Logger file headers (Campbell, Sea-bird)
 - Tokenized headers from Data Submission Template
- Metadata imported from other data structures
- Metadata imported along with EML (XML)
- Metadata added from "Templates"
 - Column (attribute) metadata matched to "variables"
 - Boilerplate documentation
 - GUI tool for creating/managing templates
- Metadata capture, re-use emphasized

Data Management Cycle

QA/QC Analysis Framework

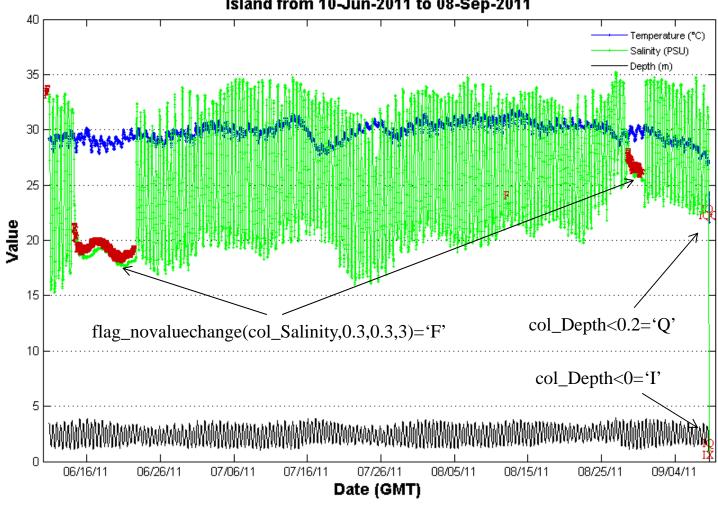
Programmatic Q/C Analysis

- · "Rules" that define conditions in which values should be flagged
- Unlimited Q/C rules for each variable
- Rules evaluated when data loaded and when data or rules change
- Rules can be predefined in metadata templates to automate Q/C on import

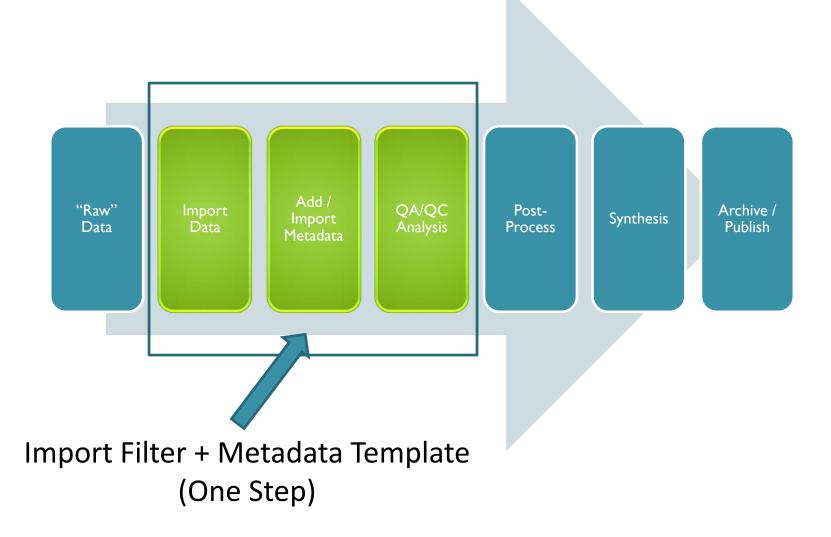
Interactive Q/C Analysis and Revision

- Qualifiers can be assigned/cleared visually on data plots with the mouse
- Qualifiers can be propagated to dependent columns
- Qualifiers can be removed or edited (search/replace) if standards change

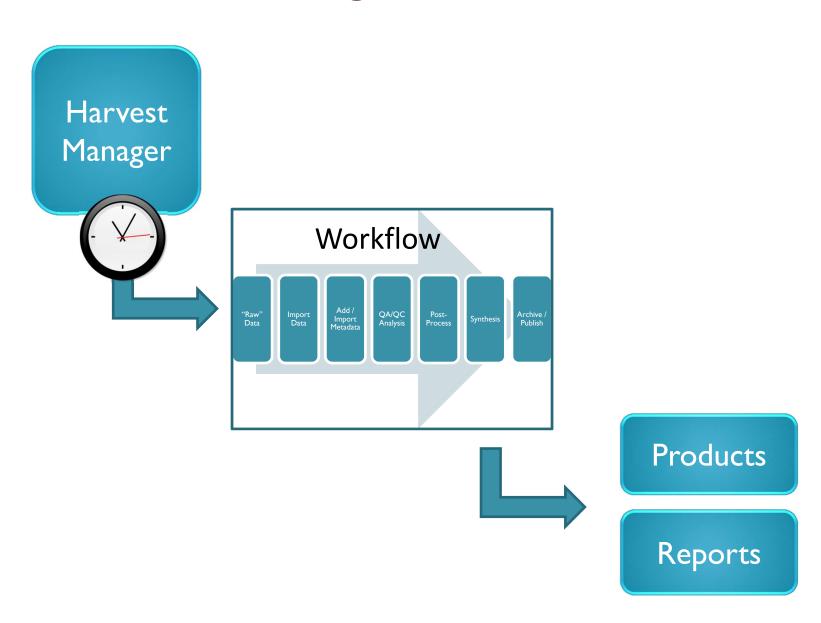
Automatic Documentation of Q/C Steps


- All Q/C operations (including revisions) logged to processing lineage
- Data anomalies reports can be auto-generated and annotated to capture rationale

Data analysis, synthesis tools Q/C-aware


- Qualified values can be filtered, summarized, visualized during analysis
- Statistics about missing/qualified values tabulated, used to qualify derived data

Example – CTD mooring


Data from Sea-Bird Electronics 37-SM MicroCAT sonde S/N 3746 deployed at the Altamaha River hydrographic datalogger deployment near Rockdedundy Island from 10-Jun-2011 to 08-Sep-2011

Data Management Cycle

Data Harvesting Workflows

Key Concepts

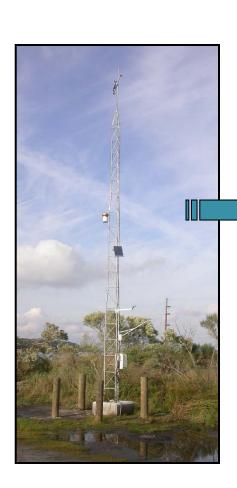
- Every operation is performed in context of a "dataset"
 - Passing data columns to a tool transports metadata as well
 - Dataset metadata used to guide transformation, plotting, analysis
 - Metadata used to auto-parameterize functions
- Workflow steps generate new datasets
 - Each step along a workflow results in a complete data set with metadata
 - Intermediate datasets can be saved or overwritten in workflows
- Processing history ("lineage") tracked automatically
 - Each tool logs operations by date/time
 - Data revisions, deletions, flagging captured at user-specified detail
 - Lineage reported in metadata
- Metadata is "live", and updated automatically
 - Data column metadata and data revisions
 - Calculations and unit conversions
 - Code definitions

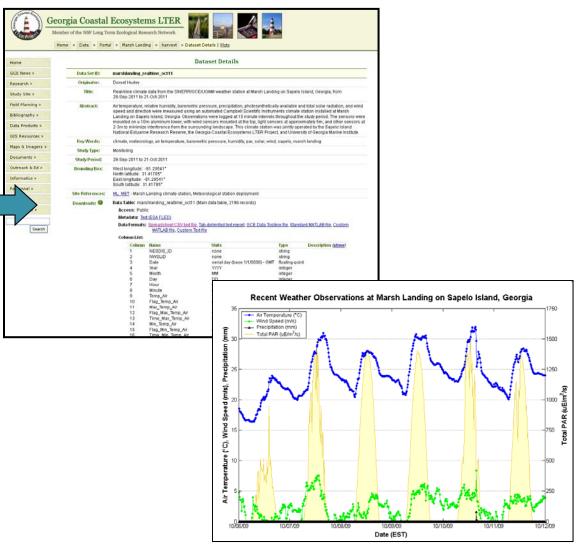
Implementation Scenarios

- End-to-End Processing (logger-to-scientist)
 - Acquire raw data from logger, file system, network
 - Assign metadata from template or using forms to validate and flag data
 - Review data and fine-tune flag assignments
 - Generate distribution files & plots, archive data, index for searching
 - Scientists can use toolbox on their desktop to analyze, integrate data

Data Pre-processing

- Acquire, validate and flag raw data (on demand or timed/triggered)
- Upload processed data files (e.g. csv) or values & flags to RDBMS (e.g. ODM)


Workflow Step


- Call toolbox from other software as part of workflow (tool-chaining)
- Use toolbox as middleware between other systems (e.g. Data Turbine & ODM)

Suitability for Real-Time Sensor Data

- Good Scalability
 - Data volumes only limited by computer memory (tested >I GB data sets)
 - Multiple instances can be run on high-end, 64bit, clustered workstations
 - Good flag evaluation performance in use, testing with diverse rule sets
- Good scope for automation
 - Command-line API for unattended batch processing via workflow scripts
 - Timed and triggered workflow implementations easy to deploy
- Support for multiple I/O formats, transport protocols
 - Formats: ASCII, MATLAB, SQL, specialized (CSI, SBE, NWIS RDB, HADS, ...)
 - Transport: local file system, UNC paths, HTTP, FTP, SOAP
- Already used at 6 LTER sites (5 sites evaluating)
- Running USGS data harvester for HydroDB since 2003

Real-Time GCE Data Harvesting (>10 years)

Ongoing Development

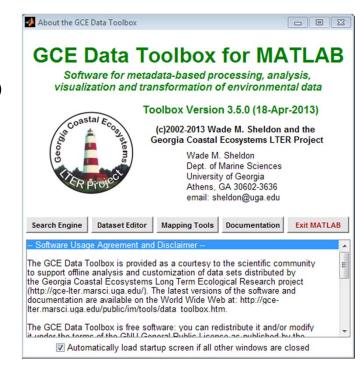
- Metadata model enhancements
 - Add "schema" support for better EML alignment
 - Add EML unit management
 - Add EML export to support LTER NIS (PASTA)
- Improve harvest management
 - Add GUI tools for configuring harvest info, plot info
 - Add GUI for managing timers
 - Add data harvesting "dashboard" for monitoring activity
- Improve documentation and training materials
- Time frame: July 2013

Resources

MATLAB

- Website: http://www.mathworks.com/products/matlab/
- Version R13 (2002) or higher required (full or student version)

Software Distribution


- Website: https://gce-svn.marsci.uga.edu/trac/GCE_Toolbox
 - Documentation
 - Distribution Downloads (stable, beta)
 - Bug reporting (tickets)
- SVN: https://gce-svn.marsci.uga.edu/svn/GCE_Toolbox/trunk
- Code is open source (GPLv3) and cross-platform

User Support

- Peer-to-peer model
- Sporadic training opportunities (LTER)
- Email: gcetoolbox-l@listserv.uga.edu (http://www.listserv.uga.edu/)
- Tutorials, video training modules in development

Interactive Training

- Introduction to the Dataset Editor application
- Importing and exploring data
 - Generic ASCII
 - Native logger files (Campbell, SeaBird)
 - Data services (Data Turbine, USGS NWIS)
- Metadata management
 - Defining attribute metadata
 - Documentation metadata, templates
- QA/QC framework
 - Defining flags and "rules"
 - Visual OA/OC
 - Managing flagged data
- Creating and exporting products
 - Batch processing raw data
 - Integrating data (join, merge)
 - Summarizing data
 - Exporting data sets and plots

