From Scientist and Sensor to Synthesis: Overview of the GCE Data Toolbox for MATLAB

Wade Sheldon Georgia Coastal Ecosystems LTER John Chamblee & Richard Cary Coweeta LTER

Background & Motivation

- Georgia Coastal Ecosystems LTER project started in Sept 2000
 - Large data collection effort (cruises, moorings, met stations, water quality, field surveys, ...)
 - NSF & LTER require data archiving and sharing
 - > LTER requires detailed "metadata" for every data set
 - Needed to standardize data processing, quality control, documentation
- No ready-to-use software for LTER data management
 - Lots of great papers and reports, no tools to download
 - Most LTER sites were using "flat files" limiting
 - ➤ A few sites using relational databases, client/server apps proprietary, complex, unfamiliar, require constant network access
- Chose to develop custom data management software (MATLAB)
 - Experienced using MATLAB for automating data processing, GUIs
 - Better code-reuse potential than database/web solution
 - Best compromise: file-based but supports fully dynamic operations

What is MATLAB?

From Mathworks: (http://www.mathworks.com/products/matlab/)

"MATLAB is a programming environment for algorithm development, data analysis, visualization, and numerical computation. Using MATLAB, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran."

Benefits:

- Ubiquitous in engineering and many science branches
- Rapid development with lots of pre-built functionality, Java integration
- Cross-platform code, GUIs and data formats (Windows, *nix, Mac OS/x)
- Stable: good support and backward compatibility (~30 year history)
- Scalable (netbook to cluster) great performance with huge data sets
- Broad I/O support (serial ports to web services)

Drawbacks:

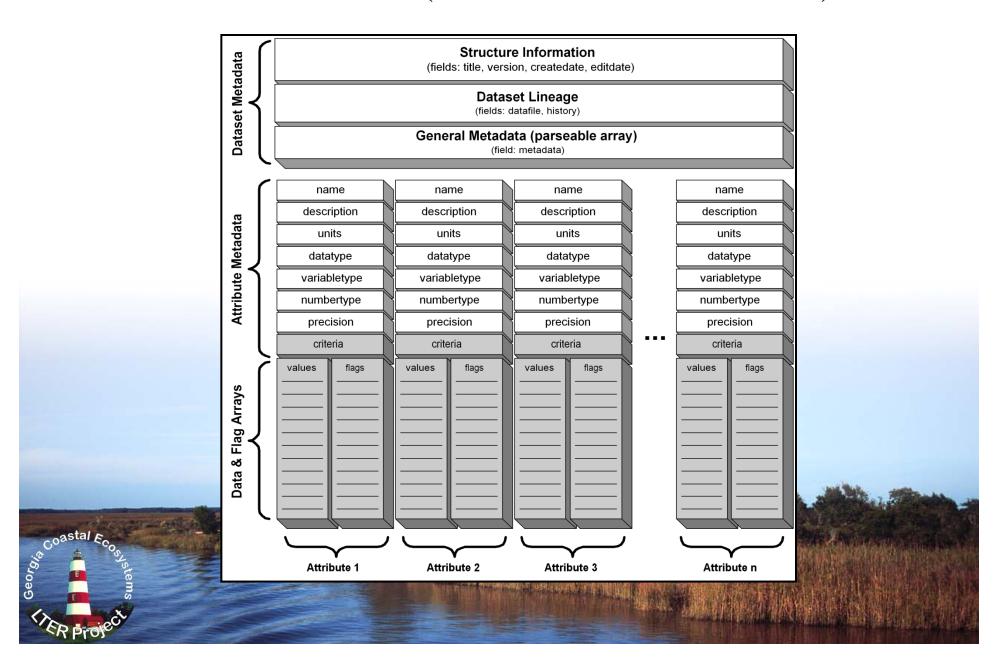
- Commercial ("licensed source") limits flexibility, costs \$-\$\$\$
- Some programming required for maximum use

Toolbox Development

Started by reviewing ESA's "FLED" report

Gross, Katherine L. and Catherine E. Pake. 1995. Final report of the Ecological Society of America Committee on the Future of Long-term Ecological Data (FLED). Volume I: Text of the Report. The Ecological Society of America, Washington, D.C.

Identified information storage requirements

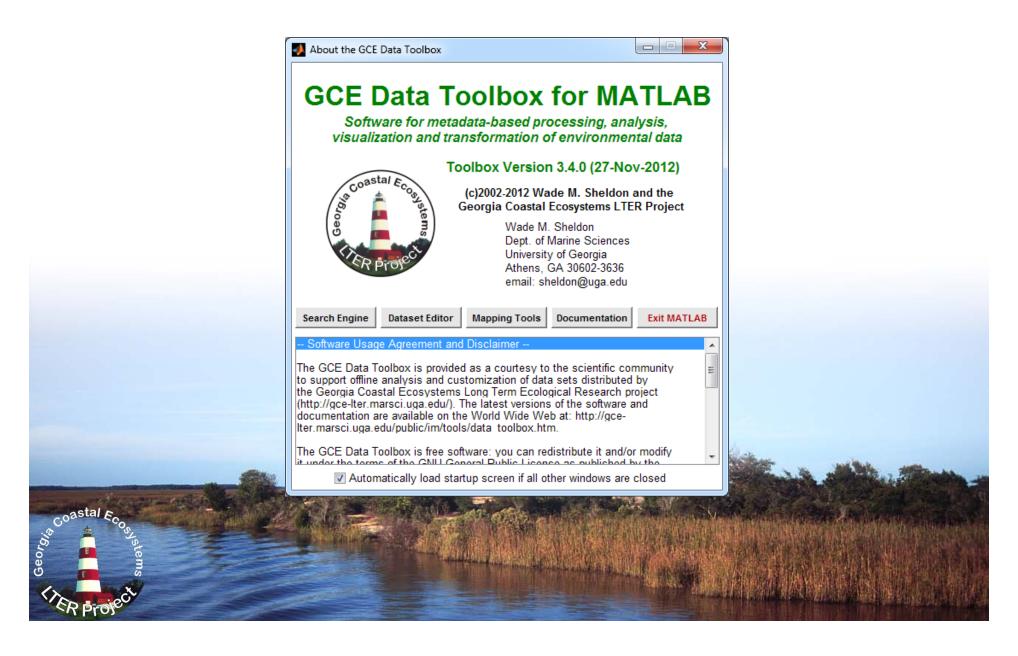

- Any number of numeric (integer, float, exponential) and text variables
- Structured attribute metadata for each variable (name, units, desc., type, precision, ...)
- Structured documentation (dataset metadata) for dynamic updating, formatting
- Versioning and processing history info (lineage)
- Quality control rules for every variable, qualifier flags for every value

Designed data model: "GCE Data Structure"

- MATLAB "struct" array with named fields for each class of information
- Detailed specifications for allowed content in each field
- "Virtual table" design based on matched arrays for linking attribute metadata, data, flags
- Same philosophy as relational database table plus additional descriptors

Data Model (GCE Data Structure)

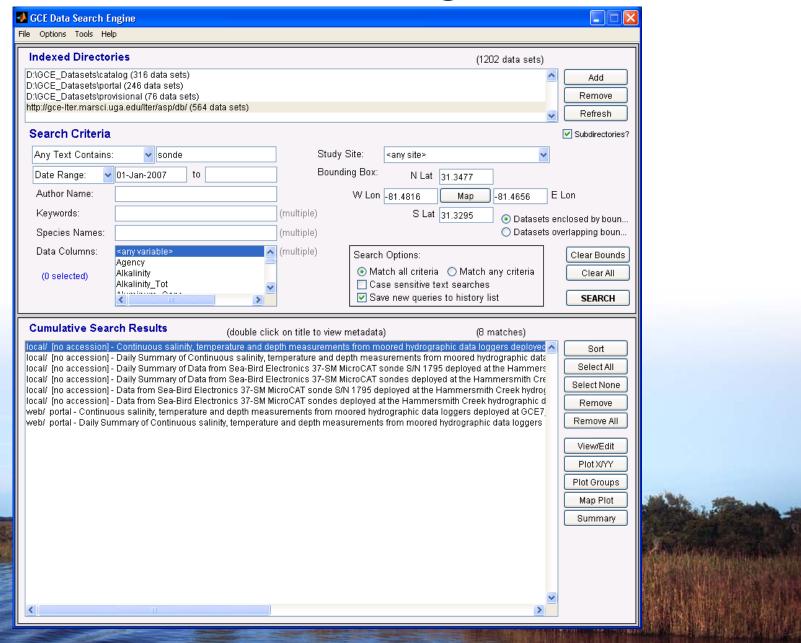
Toolbox Development


- Developed MATLAB software library to work with data structures
 - Utility functions to abstract low-level operations (API)
 - Create structure, add/delete columns, copy/insert/delete rows
 - Extract, sort, query, update data, update flags
 - Analytical functions for high-level operations
 - Statistics, visualizations, geographic & date/time transformations
 - Unit inter-conversions, aggregation/re-sampling, joining data sets
 - > GUI interface functions to simplify using the toolbox
 - All functions use metadata, data introspection to auto-parameterize and automate operations (semantic processing)
- Developed indexing and search support (and GUI search engine)

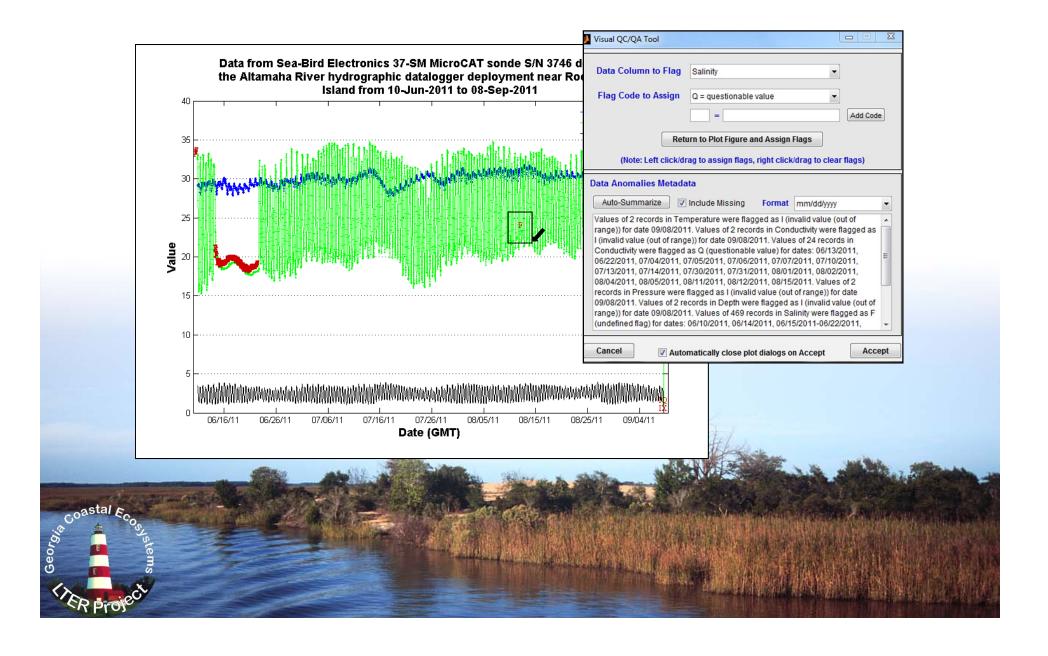
Command Line

```
🥠 МАТLAB 7.9.0 (R2009b)
File Edit Debug Desktop Window Help
                                                                                                         ~ [...]
🌇 🚰 👗 🖣 📬 🤊 🥲 🧥 📸 😭 📦 Current Folder: c:\userfiles\wade\svn_repositories\gce_toolbox
 Shortcuts 🖪 How to Add 🔃 What's New 📣 GCE Toolbox
   >> [s,msg] = fetch_usgs('02226000','realtime',60,'USGS_Doctortown');
   s =
            version: 'GCE Data Structure 1.1 (29-Mar-2001)'
             title: 'Data from USGS Station 02226000 (ALTAMAHA RIVER AT DOCTORTOWN, GA) for 05-Feb-2010 through 06-Apr-2010'
           metadata: {87x3 cell}
           datafile: {'usgs 02226000 realtime 20100406 1130 mod.txt' [5797]}
         createdate: '06-Apr-2010 11:30:48'
           editdate: '06-Apr-2010 11:30:50'
            history: {16x2 cell}
              name: {lx12 cel1}
              units: ('none' 'none' 'serial day (base 1/1/0000) - GMT' 'YYYY' 'MM' 'DD' 'hr' 'min' 'm' 'm'3/sec' 'mm'}
         description: {1x12 cel1}
          datatype: {'s' 's' 'd' 'f' 'd' 'd' 'd' 'd' 'f' 'f' 'f'}
       variabletype: {lx12 cell}
         numbertype: {1x12 cel1}
          precision: [0 0 0 8 0 0 0 0 0 2 1 2]
             values: {lx12 cel1}
           criteria: {1x12 cel1}
              >> listcols(s)
    ans =
     1: Agency -- string
     2: StationID -- string
     3: Provisional -- integer
     4: Date (serial day (base 1/1/0000) - GMT) -- floating-point
     5: Year (YYYY) -- integer
     6: Month (MM) -- integer
    7: Day (DD) -- integer
8: Hour (hr) -- integer
     9: Minute (min) -- integer
    10: GageHeight (m) -- floating-point
    11: Discharge (m^3/sec) -- floating-point
    12: Precipitation (mm) -- floating-point
    >> dt = extract(s,'Date'); discharge = extract(s,'Discharge');
    >> whos
                                       Bytes Class
     Name
                      Size
                                                       Attributes
                     12x63
                                        1512 char
      ans
      discharge
                    5797x1
                                        46376 double
                    5797x1
                                       46376 double
                    0x0
                                         0 char
      msg
                      1x1
                                     1346932 struct
  fx >> |
```

Startup Dialog


Dataset Editor

		inity, temperature and depth n Tools Misc Window Help	neasuremen	. 🔲 🗆 🔀	
	Column List (se	lect to display properties)			
	Site (none) Longitude (degreen Latitude (degreen Latitude (none) Pump (none)	grees) es) ne) y (base 1/1/0000) - GMT) °C) S/m))	Mo' Mo' Mo' Mo' Mi	ove First ove Up ove Down ove Last review stogram onual QC Add Delete	
	Column Name	Site			
	Column Units	none		Convert	
	Description				
	Nearest nomin	al GCE-LTER sampling site		^ _	
	Data Type	integer (d)		~	Hehola .
	Variable Type	categorical values (nominal)		~	
	Numerical Typ	e discrete/interval (discrete)		~	
Coastal Eco	Precision	O decimal places			Managaria de la companya de la comp
Coastal Eco	Flag Criteria			Edit	

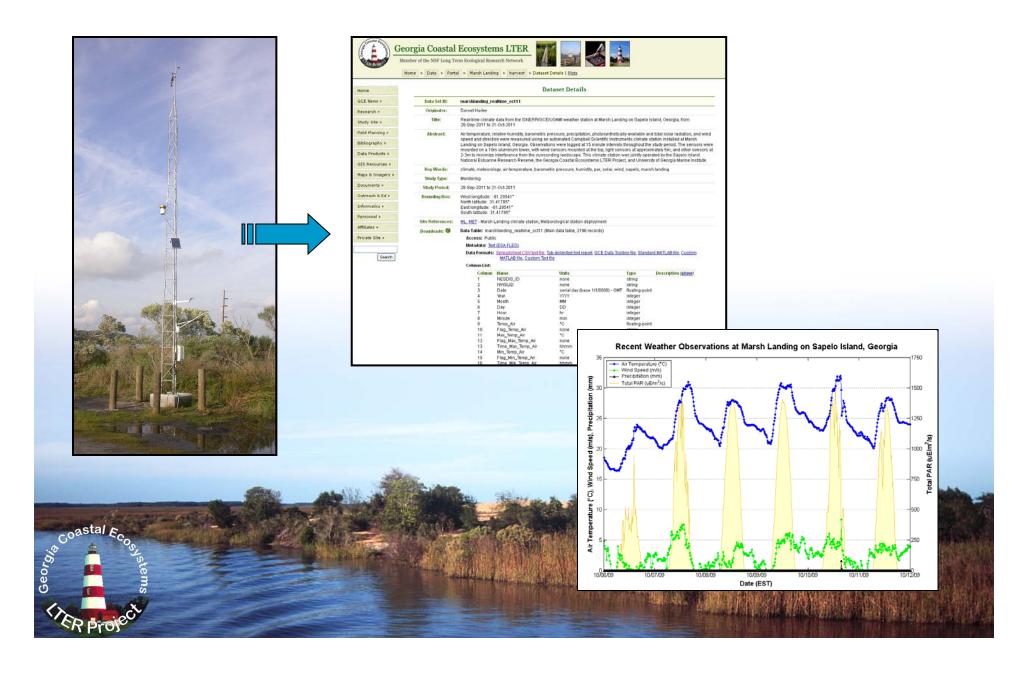

Data Viewer/Editor

File Edit Options													
All	Site	Longitude	Latitude	Instrument	Pump	Date	Year	Month (MM)	Day (DD)	A			
None	(none)	(degrees)	(degrees)	(none)	(none)	(serial day (base	(YYYY)						
1	7	-81.475500	31.338383	2398	0	733043.000000	2007	1	k S	1			
2	7	-81.475500	31,338383	2398	0	733043.020833	2007	1		1			
3	7	-81.475500	31.338383	2398	0	733043.041667	2007	1	1	1			
4	7	-81.475500	31.338383	2398	0	733043.062500	2007	1		1			
5	7	-81.475500	31.338383	2398	0	733043.083333	2007	1	ľ e	1			
6	7	-81,475500	31.338383	2398	0	733043.104167	2007	1	9	1			
7	7	-81.475500	31.338383	2398	.0	733043.125000	2007	1		1			
8	7	-81.475500	31.338383	2398	0	733043.145833	2007	1	1	1			
9	7	-81.475500	31.338383	2398	0	733043.166667	2007	1	F 3	1			
10	7	-81.475500	31,338383	2398	0	733043.187500	2007	1	1	1			
11	7	-81.475500	31.338383	2398	.0	733043.208333	2007	1		1			
12	7	-81.475500	31.338383	2398	0	733043.229167	2007	1		1			
13	7	-81.475500	31.338383	2398	0	733043.250000	2007	1		1			
14	7	-81,475500	31.338383	2398	0	733043.270833	2007	1		1			
15	7	-81.475500	31.338383	2398	0	733043.291667	2007	1		1			
16	7	-81.475500	31.338383	2398	0	733043.312500	2007	1		1			
17	7	-81.475500	31.338383	2398	0	733043.333333	2007	1	K S	1			
18	7	-81.475500	31.338383	2398	0	733043.354167	2007	1		1			
19	7	-81.475500	31.338383	2398	0	733043.375000	2007	1	ė	1			
20	7	-81.475500	31.338383	2398	0	733043.395833	2007	1		1			
21	7	-81.475500	31.338383	2398	0	733043.416667	2007	1	ř F	1			
22	7	-81,475500	31.338383	2398	0	733043.437500	2007	1		1			
23	7	-81.475500	31.338383	2398	0	733043.458333	2007	1		1			
24	7	-81,475500	31.338383	2398	0	733043.479167	2007	1		1			
25	7	-81.475500	31.338383	2398	0	733043.500000	2007	1	r s	1			

Data Search Engine

Interactive Plotting & Q/C Tools

Key Concepts


- Every operation is performed in context of a "dataset"
 - > Passing data columns to a tool transports metadata as well
 - Dataset metadata used to guide transformation, plotting, analysis
 - Metadata used to auto-parameterize functions
- Data structure instances are independent
 - > Each step along a workflow results in a complete data set with metadata
 - Intermediate datasets can be saved or overwritten in workflows
- Processing history ("lineage") information captured for all steps
 - Each tool logs operations by date/time
 - > Data revisions, deletions, flagging captured at user-specified detail
 - > Lineage reported in metadata
- Dataset metadata is "live", and updated automatically
 - Attribute changes
 - > Calculations, unit conversions
 - Code definitions

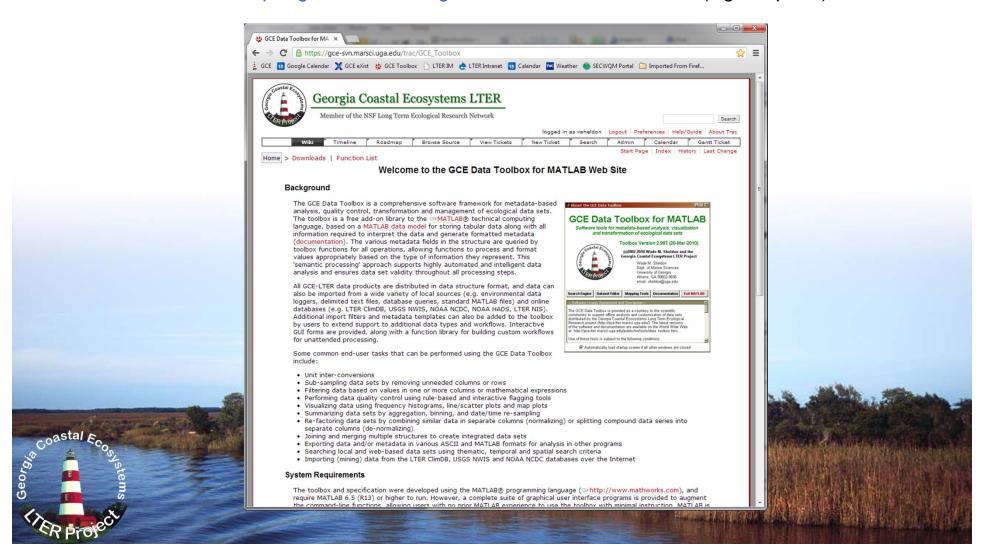
Suitability for Real-Time Sensor Data

- Good Scalability
 - Data volumes only limited by computer memory (tested >2 GB data sets)
 - Multiple instances can be run on high-end, 64bit, clustered workstations
 - Good flag evaluation performance in use, testing with diverse rule sets
- Good scope for automation
 - Command-line API for unattended batch processing via workflow scripts
 - Timed and triggered workflow implementations easy to deploy
- Support for multiple I/O formats, transport protocols
 - > Formats: ASCII, MATLAB, SQL, specialized (CSI, SBE, NWIS RDB, HADS, ...)
 - Transport: local file system, UNC paths, HTTP, FTP, SOAP
- Already used for real-time GCE data, USGS data harvesting service (LTER HydroDB, CWT)

Real-Time GCE Data Harvesting

Implementation Scenarios

- End-to-End Processing (logger-to-scientist)
 - Acquire raw data from logger, file system, network (CIFS,HTTP,FTP,SOAP)
 - Assign metadata from template or using forms to validate and flag data
 - Review data and fine-tune flag assignments
 - Generate distribution files & plots, archive data, index for searching
 - Scientists can use toolbox on their desktop


Data Pre-processing

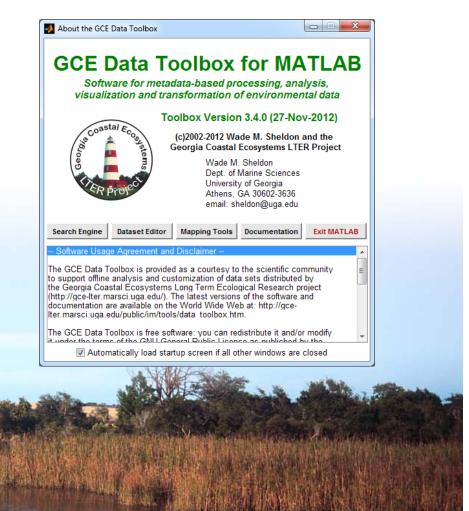
- Acquire, validate and flag raw data (on demand or timed/triggered)
- Upload processed data files (e.g. csv) or value & flag arrays to RDBMS (e.g HIS)
- Workflow Step
 - Call toolbox from other software as part of workflow (e.g. LoggerNet)
 - DataTurbine via MATLAB off-ramp or Java API

Toolbox Code & Support

- Trac support web site: https://gce-svn.marsci.uga.edu/trac/GCE_Toolbox
- SVN address: https://gce-svn.marsci.uga.edu/svn/GCE_Toolbox/trunk (login required)

Toolbox Timeline

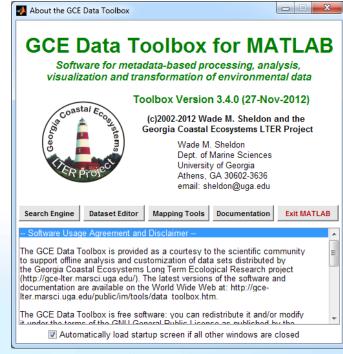
- 2001 Initial toolbox development completed in May 2001, Metabase MMS online Sep 2001
- 2002 Added basic GUI interface, released code to GCE affiliates
- 2003 Added dynamic data harvesting support (USGS, NOAA, CSI LoggerNet);
 automated USGS harvesting service for ClimDB/HydroDB
- 2004 Added "search engine" tool for local search/integration of data
- 2005 First public distribution of "compiled" code; source code on request to LTER sites
- 2006 Added ClimDB data mining GUI
- 2007 Added enhanced data synthesis, refactoring tools
- 2008 Added GUI for managing QA/QC rules in metadata templates, additional flag tools
- 2009 Refined XML schema for formatted metadata; code moved to SVN; CWT adopts toolbox
- 2010 Toolbox released as open source (GPLv3); Trac support site established
- 2011 Expanded QA/QC tool options, GUI tools, refinements; focused on usability
- 2012 Added EML support, GUI for batch processing (import/export); ARRA funding received; first training workshop held


What's Next?

- Shameless plug: help us decide!
- Metadata model enhancements
 - ➤ Add "schema" support for better EML, Metabase alignment
 - Add EML export, enhance EML import
 - Better Metabase integration (fully bidirectional push/pull)
- Improve harvest management
 - > Add GUI tools for configuring harvest info, plot info
 - Add GUI for managing timers
 - Add data harvesting "dashboard" for monitoring activity
- Improve documentation and training materials

Interactive Training – Day 1

- Installing and starting the GCE Data Toolbox
- Introduction to the Data Set Editor application
- Importing and exploring data
 - Generic ASCII
 - Specialized logger formats
- Metadata management
 - > Defining attribute metadata
 - Documentation metadata
 - Metadata templates
- QA/QC framework
 - Defining flags
 - Creating "rules"
 - Visual QA/QC
 - Copying and locking/unlocking flags
- Creating and exporting products
 - Batch processing raw data
 - Integrating data (join, merge)
 - Exporting

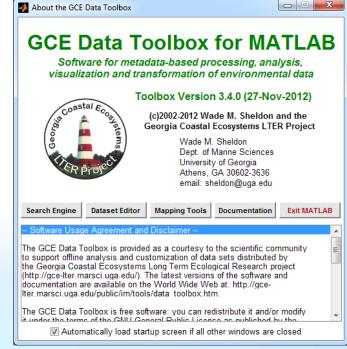

Interactive Training – Day 2

Automating data processing

- Intro to command line API
- Scripted workflows
- Data harvesting support
- Harvest timers

Working with your own data

- > Choosing an import filter
- Defining metadata, templates
- Post-processing, analysis
- Harvesting scenarios
- > ...


Interactive Training – Day 3

Metabase MMS & GCE Toolbox

- Intro to the Metabase MMS
- Services and applications
- > EML & NIS support
- Metabase-Toolbox integration
- > Future plans

Open discussion

- Training feedback
- Next steps
- "Missing links"
- **>** ...

