Document Details

Title Utilizing Repeat UAV Imagery to Evaluate the Spatiotemporal Patterns and Environmental Drivers of Wrack in a Coastal Georgia Salt Marsh
Archive All Files / Documents / Publications / Journal Articles
Abstract

Wrack, comprised of dead marsh grass, occurs naturally in salt marshes. Wrack can reduce biomass in underlying vegetation and affect salt marsh function. Unmanned aerial vehicles (UAV) provide a more efficient and cost-effective method than traditional field sampling for characterizing the distribution of wrack at a fine spatial scale. We used a DJI Matrice 210 UAV with a MicaSense Altum to collect a total of 20 images from January 2020-December 2021 in a salt marsh on Sapelo Island, GA. Wrack was classified using principal component analysis. Classified images were then used to characterize the size-frequency distribution, landscape position, and potential environmental drivers of wrack. We observed ~ 2100 wrack patches over the course of the study, most of which were present for only a single month. Wrack was found most frequently at the mean higher high water line (~ 1 m), although the areas with the highest frequency of wrack as a proportion of available marsh area were at a higher elevation (> 1.3 m) and closer to creeks or shorelines (~ 40-50 m). High tide events were found to decrease the distance to water of wrack and increase the standard deviation of wrack elevation. This study provides a methodology for understanding wrack dynamics at a landscape scale using frequent, high-resolution UAV data.

Contributors Tyler Lynn, Merryl Alber, Jacob Shalack and Deepak Mishra
Citation

Lynn, T., Alber, M., Shalack, J. and Mishra, D. 2023. Utilizing Repeat UAV Imagery to Evaluate the Spatiotemporal Patterns and Environmental Drivers of Wrack in a Coastal Georgia Salt Marsh. Estuaries and Coasts. (DOI: https://doi.org/10.1007/s12237-023-01265-z)

Key Words salt marsh, Sapelo Island, UAV, wrack
File Date 2023
Web Link Web link
view/download Web link
LTER
NSF

This material is based upon work supported by the National Science Foundation under grants OCE-9982133, OCE-0620959, OCE-1237140 and OCE-1832178. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.