|
Documents - Publications - Journal Articles
Category |
Theme |
Document (click on title to view file details) |
Download |
Publications |
Journal Articles |
Carbonate chemistry and the potential for acidification in Georgia coastal marshes and the South Atlantic Bight, USA Abstract - In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (pCO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be “hot-spots” for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during this period in 2014. In addition, ΩAr increases rapidly offshore, especially in drier months (July). River stream flow during 2014 was anomalously low compared to climatological means; therefore, offshore influences from terrestrial carbon could also be decreased. The SAB shelf may not be strongly influenced by terrestrial inputs to acidification during drier than normal periods; conversely, shelf waters that are well-buffered against acidification may not play a significant role in mitigating acidification within the Georgia marshes. (contributed by Janet J. Reimer, 2024) |
|
|
|
Variance reflects resilience to disturbance along a stress gradient: experimental evidence from coastal marshes Abstract - Quantifying ecosystem resilience to disturbance is important for understanding the effects of disturbances on ecosystems, especially in an era of rapid global change. However, there are few studies that have used standardized experimental disturbances to compare resilience patterns across abiotic gradients in real-world ecosystems. Theoretical studies have suggested that increased return times are associated with increasing variance during recovery from disturbance. However, this notion has rarely been explicitly tested in field, in part due to the challenges involved in obtaining long-term experimental data. In this study, we examined resilience to disturbance of 12 coastal marsh sites (five low-salinity and seven polyhaline (=salt) marshes) along a salinity gradient in Georgia, USA. We found that recovery times after experimental disturbance ranged from 7 to >127 months, and differed among response variables (vegetation height, cover and composition). Recovery rates decreased along the stress gradient of increasing salinity, presumably due to stress reducing plant vigor, but only when low-salinity and polyhaline sites were analyzed separately, indicating a strong role for traits of dominant plant species. The coefficient of variation of vegetation cover and height in control plots did not vary with salinity. In disturbed plots, however, the CV was consistently elevated during the recovery period and increased with salinity. Moreover, higher CV values during recovery were correlated with slower recovery rates. Our results deepen our understanding of resilience to disturbance in natural ecosystems, and point to novel ways that variance can be used either to infer recent disturbance, or, if measured in areas with a known disturbance history, to predict recovery patterns. (contributed by J. Wang, 2024) |
|
|
|
Long-term data reveal that grazer density mediates climatic stress in salt marshes Abstract - Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small-scale and short-term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22-year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top-down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short-term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems. (contributed by Carter S. Smith, 2024) |
|
|
|
Multivariate Analysis of the Community Composition of Tidal Freshwater Forests on the Altamaha River, Georgia Abstract - Situated in the transitional zone between non-tidal forests upstream and tidal freshwater marshes downstream, tidal freshwater forests (TFF) occupy a unique and increasingly precarious habitat due to the threat of saltwater intrusion and sea level rise. Salinization causes tree mortality and forest-to-marsh transition, which reduces biodiversity and carbon sequestration. The Altamaha River is the longest undammed river on the United States East Coast and has extensive TFF, but there have been only limited field studies examining TFF along the entire gradient of salinity and flooding. We surveyed thirty-eight forest plots on the Altamaha River along a gradient of tidal influence, and measured tree species composition, diameter, and height. Hierarchical clustering and indicator species analysis were used to identify TFF communities. The relationship of these communities to elevation and river distance was assessed using non-metric multidimensional scaling (NMDS). We identified six significantly different forest communities: Oak/Hornbeam, Water Tupelo, Bald Cypress/Tupelo, Pine, Swamp Tupelo, and Bald Cypress. Both elevation and river distance were significantly correlated with plot species composition (p = 0.001). Plots at the downstream extent of our study area had lower stem density, basal area, and species diversity than those further upstream, suggesting saltwater intrusion. This study demonstrates the importance of and need for thorough and robust analyses of tidal freshwater forest composition to improve prediction of TFF response to sea level rise. (contributed by Galen Costomiris, 2024) |
|
|
|
The resistance of Georgia coastal marshes to hurricanes Abstract - Ecosystems vary broadly in their responses to disturbance, ranging from highly impacted to resilient or resistant. We conducted a large-scale analysis of hurricane disturbance effects on coastal marshes by examining 20 years of data from 10 sites covering 100,000 ha at the Georgia Coastal Ecosystems Long-Term Ecological Research site distributed across gradients of salinity and proximity to the ocean. We analyzed the impacts of Hurricanes Matthew (in 2016) and Irma (in 2017) on marsh biota (plants, crabs, and snails) and physical attributes (erosion, wrack deposition, and sedimentation). We compared these variables prior to the storms (2000–2015) to years with storms (2016, 2017) to those after the storms (2018–2020). Hurricanes generated storm surges that increased water depth and salinity of oligotrophic areas for up to 48 h. Biological variables in the marsh showed few effects of the hurricanes. The only physical variable affected was creek bank slumping; however, slumping had already increased a year before the hurricanes, suggesting that slumping could have a different cause. Thus, our study uncovered only minor, ephemeral impacts on Georgia coastal marshes, highlighting their resistance to hurricane disturbance of the lower magnitude that typically confronts this region of coastline. (contributed by Rachel S. Smith, 2024) |
|
|
|
Canopy Heterogeneity and Environmental Variability Drive Annual Budgets of Net Ecosystem Carbon Exchange in a Tidal Marsh Abstract - Tidal salt marshes are important ecosystems in the global carbon cycle. Understanding their net carbon exchange with the atmosphere is required to accurately estimate their net ecosystem carbon budget (NECB). In this study, we present the interannual net ecosystem exchange (NEE) of CO2 derived from eddy covariance (EC) for a Spartina alterniflora salt marsh. We found interannual NEE could vary up to 3‐fold and range from − 58.5 ± 11.3 to − 222.9 ± 12.4 g C m− 2 year− 1 in 2016 and 2020, respectively. Further, we found that atmospheric CO2 fluxes were spatially dependent and varied across short distances. High biomass regions along tidal creek and estuary edges had up to 2‐fold higher annual NEE than lower biomass marsh interiors. In addition to the spatial variation of NEE, regions of the marsh represented by distinct canopy zonation responded to environmental drivers differently. Low elevation edges (with taller canopies) had a higher correlation with river discharge (R2 = 0.61), the main freshwater input into the system, while marsh interiors (with short canopies) were better correlated with in situ precipitation (R2 = 0.53). Lastly, we extrapolated interannual NEE to the wider marsh system, demonstrating the potential underestimation of annual NEE when not considering spatially explicit rates of NEE. Our work provides a basis for further research to understand the temporal and spatial dynamics of productivity in coastal wetlands, ecosystems which are at the forefront of experiencing climate change induced variability in precipitation, temperature, and sea level rise that have the potential to alter ecosystem productivity. (contributed by Peter Hawman, 2024) |
|
|
|
Blue Carbon and Wetlands Compensatory Mitigation: Fitting a Climate-Sized Peg into a Watershed-Sized Hole Abstract - This Article seeks to provide policymakers and coastal resource managers with detailed insights into the challenges and opportunities for incorporating considerations of “blue carbon” into compensatory mitigation required under Clean Water Act Section 404. As our understanding of blue carbon systems deepens, so too does the urgency of responding to the global climate crisis. Commentators have encouraged the inclusion of blue carbon into existing domestic policies, including Clean Water Act Section 404. It is the authors’ hope that focused articles such as this can shine a light on which approaches might be most tenable under existing law, directing efforts towards workable solutions. (contributed by Katie Hill, 2024) |
|
|
|
The dynamics of marsh-channel slump blocks: an observational study using repeated drone imagery Abstract - Slump blocks are widely distributed features along marsh shorelines that can disturb marsh edge habitats and affect marsh geomorphology and sediment dynamics. However, little is known about their spatial distribution patterns or their longevity and movement. We employed an unoccupied aerial vehicle (UAV) to track slump blocks in 11 monthly images (March 2020–March 2021) of Dean Creek, a tidal creek surrounded by salt marsh located on Sapelo Island (GA, USA). Slump blocks were observed along both convex and concave banks of the creek in all images, with sizes between 0.03 and 72.51m2. Although the majority of blocks were categorized as persistent, there were also new blocks in each image. Most blocks were lost through submergence, and both decreased in area and moved towards the center of the channel over time. However, some blocks reconnected to the marsh platform, which has not been previously observed. These blocks were initially larger and located closer to the marsh edge than those that submerged, and they increased in area over time. Only 13 out of a cohort of 61 newly created blocks observed in May 2020 remained after 5 months, suggesting that most blocks persist for only a short time. When taken together, the total area of new slump blocks was 886m2, and that of reconnected blocks was 652m2. This resulted in a net expansion of the channel by 234m2 over the study period, accounting for about 66% of the overall increase in the channel area of Dean Creek, and this suggests that slump block processes play an important role in tidal creek channel widening. This study illustrates the power of repeated UAV surveys to monitor short-term geomorphological processes, such as slump block formation and loss, to provide new insights into marsh eco-geomorphological processes. (contributed by Zhicheng Yang, 2024) |
|
|
|
Resistance and resilience: Tidal freshwater marsh response and recovery to acute and chronic saltwater intrusion Abstract - The ability to both resist and recover from disturbances like storm surge and saltwater intrusion plays a key role in shaping the structure and function of tidal marshes. In this study, porewater chemistry, vegetation, and soil elevation change were measured in field plots of a tidal freshwater marsh exposed to four years of experimental press (chronic) and pulse (acute) brackish water additions followed by five years of recovery to assess their resistance and resilience to saltwater intrusion. Press additions produced significant, widespread changes in marsh structure and function including increased porewater N and P, reduced macrophyte cover and species richness, and loss of soil surface elevation whereas pulse additions had little effect. Once dosing ceased, porewater chemistry, vegetation and soils in press plots recovered at differing rates, with porewater N and P declining to background levels after one year, plant cover and species richness increasing within two to four years, and soil surface elevation increasing to similar levels found in control plots after five years. The plant community in the press treatment converged with the other treatments after 3–4 years, though macrophyte species exhibited varying rates of recovery. Ground cover (Ludwigia repens) and soft stem species (Persicaria) that declined first, recovered faster than Zizaniopsis miliacea that was more resistant but less resilient to brackish water intrusion. While tidal freshwater marshes are resistant and resilient to pulses such as those that stem from hurricanes and storm surges, continued long-term intrusion events like sea level rise (SLR) will likely lead to conversion into brackish marsh. Understanding long-term responses and tradeoffs in resistance and recovery as shown in this experiment offers insight into the future trajectory of tidal freshwater marshes as well as broader ecosystem responses to disturbance and recovery crucial to management and restoration. (contributed by Madeleine Thompson, 2024) |
|
|
|
Modeling the variability in phenology-based growth dynamics of Spartinaalterniflora with latitude Abstract - The variation in dynamics of translocation between above- and below-ground biomass of Spartina alterniflora, the dominant blue carbon source in North Americansaltmarshes, was studied across latitude using Phenology-based Growth dynamic model (PG model). The study shows that the main sources of the carbon translocationto the below-ground tissues varies with latitude. The model analysis suggests both photosynthates and the remobilization of assimilates during growing andsenescing periods serve as the main sources of the carbon translocation from above-to below-ground tissues in a higher latitude. However, in the lower latituderegions with a warmer environment, the main source to build up the below-ground biomass was the immediate photosynthesis that occurred during growing seasons.The total photosynthates translocation from above-to below-ground tissues during growing seasons increase as the latitude decreases, whereas the assimilatestranslocation from the senescing shoots to below-ground during fall seasons increases as latitude increases. Assimilates are allocated from below-to above-groundtissues during the dormancy period in higher latitude. The model enables us to predict both above- and below-ground biomass and quantify the carbon translocation,which helps us understand the main sources of allocation to the below-ground tissues, a critical component of potential blue carbon sequestration, at differentphenological events. (contributed by Yeajin Jung, 2024) |
|
|
|
Controls on spatial variation in porewater methane concentrations across United States tidal wetlands Abstract - Tidal wetlands can be a substantial sink of greenhouse gases, which can be offset by variable methane (CH4) emissions under certain environmental conditions and anthropogenic interventions. Land managers and policymakers need maps of tidal wetland CH4 properties to make restoration decisions and inventory greenhouse gases. However, there is a mismatch in spatial scale between point-based sampling of porewater CH4 concentration and its predictors, and the coarser resolution mapping products used to upscale these data. We sampled porewater CH4 concentrations, salinity, sulfate (SO42−), ammonium (NH4+), and total Fe using a spatially stratified sampling at 27 tidal wetlands in the United States. We measured porewater CH4 concentrations across four orders of magnitude (0.05 to 852.9 µM). The relative contribution of spatial scale to variance in CH4 was highest between- and within-sites. Porewater CH4 concentration was best explained by SO42− concentration with segmented linear regression (p < 0.01, R2 = 0.54) indicating lesser sensitivity of CH4 to SO42− below 0.62 mM SO42−. Salinity was a significant proxy for CH4 concentration, because it was highly correlated with SO42− (p < 0.01, R2 = 0.909). However, salinity was less predictive of CH4 with segmented linear regression (p < 0.01, R2 = 0.319) relative to SO42−. Neither NH4+, total Fe, nor relative tidal elevation correlated significantly with porewater CH4; however, NH4+ was positively and significantly correlated with SO42− after detrending CH4 for its relationship with SO42− (p < 0.01, R2 = 0.194). Future sampling should focus on within- and between-site environmental gradients to accurately map CH4 variation. Mapping salinity at sub-watershed scales has some potential for mapping SO42−, and by proxy, constraining spatial variation in porewater CH4 concentrations. Additional work is needed to explain site-level deviations from the salinity-sulfate relationship and elucidate other predictors of methanogenesis. This work demonstrates a unique approach to remote team science and the potential to strengthen collaborative research networks. (contributed by Erika L. Koontz, 2024) |
|
|
|
Applying the core-satellite species concept: Characteristics of rare and common riverine dissolved organic matter Abstract - Introduction: Dissolved organic matter (DOM) composition varies over space and time, with a multitude of factors driving the presence or absence of each compound found in the complex DOM mixture. Compounds ubiquitously present across a wide range of river systems (hereafter termed core compounds) may differ in chemical composition and reactivity from compounds present in only a few settings (hereafter termed satellite compounds). Here, we investigated the spatial patterns in DOM molecular formulae presence (occupancy) in surface water and sediments across 97 river corridors at a continental scale using the “Worldwide Hydrobiogeochemical Observation Network for Dynamic River Systems—WHONDRS” research consortium.Methods: We used a novel data-driven approach to identify core and satellite compounds and compared their molecular properties identified with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS).Results: We found that core compounds clustered around intermediate hydrogen/carbon and oxygen/carbon ratios across both sediment and surface water samples, whereas the satellite compounds varied widely in their elemental composition. Within surface water samples, core compounds were dominated by lignin-like formulae, whereas protein-like formulae dominated the core pool in sediment samples. In contrast, satellite molecular formulae were more evenly distributed between compound classes in both sediment and water molecules. Core compounds found in both sediment and water exhibited lower molecular mass, lower oxidation state, and a higher degree of aromaticity, and were inferred to be more persistent than global satellite compounds. Higher putative biochemical transformations were found in core than satellite compounds, suggesting that the core pool was more processed.Discussion: The observed differences in chemical properties of core and satellite compounds point to potential differences in their sources and contribution to DOM processing in river corridors. Overall, our work points to the potential of data-driven approaches separating rare and common compounds to reduce some of the complexity inherent in studying riverine DOM. (contributed by M. Stadler, 2023) |
|
|
|
Temporal patterns and causal drivers of aboveground plant biomass in a coastal wetland: insights from time-series analyses Abstract - Salt marshes play a crucial role in coastal biogeochemical cycles and provide unique ecosystem services. Salt marsh biomass, which can strongly influence such services, varies over time in response to hydrologic conditions and other environmental drivers. We used gap-filled monthly observations of Spartina alterniflora aboveground biomass derived from Landsat 5 and Landsat 8 satellite imagery from 1984-2018 to analyze temporal patterns in biomass in comparison to air temperature, precipitation, river discharge, nutrient input, sea level, and drought index for a southeastern US salt marsh. Wavelet analysis and ensemble empirical mode decomposition identified month to multi-year periodicities in both plant biomass and environmental drivers. Wavelet coherence detected cross-correlations between annual biomass cycles and precipitation, temperature, river discharge, nutrient concentrations (NOx and PO43–) and sea level. At longer periods we detected coherence between biomass and all variables except precipitation. Through empirical dynamic modeling we showed that temperature, river discharge, drought, sea level, and river nutrient concentrations were causally connected to salt marsh biomass and exceeded the confounding effect of seasonality. This study demonstrated the insights into biomass dynamics and causal connections that can be gained through the analysis of long-term data. (contributed by Kadir Bice, 2023) |
|
|
|
Differential impact of two major polychaete guilds on microbial communities in marine sediments: a microcosm study Abstract - Even though sediment macrofauna are widespread in the global seafloor, the influence of these fauna on microbial communities that drive sediment biogeochemical cycles remains poorly understood. According to recent field investigations, macrofaunal activities control bacterial and archaeal community structure in surface sediments, but the inferred mechanisms have not been experimentally verified. Here we use laboratory microcosms to investigate how activities of two major polychaete guilds, the lugworms, represented by Abarenicola pacifica, and the clamworms, represented by Nereis vexillosa, influence microbial communities in coastal sediments. A. pacifica treatments show >tenfold increases in microbial cell-specific consumption rates of oxygen and nitrate, largely due to the strong ventilation activity of A. pacifica. While ventilation resulted in clearly elevated percentages of nitrifying archaea (Nitrosopumilus spp.) in surface sediments, it only minorly affected bacterial community composition. By comparison, reworking – mainly by deposit-feeding of A. pacifica – had a more pronounced impact on microorganismal communities, significantly driving down abundances of Bacteria and Archaea. Within the Bacteria, lineages that have been linked to the degradation of microalgal biomass (e.g., Flavobacteriaceae and Rhodobacteraceae), were especially affected, consistent with the previously reported selective feeding of A. pacifica on microalgal detritus. In contrast, N. vexillosa, which is not a deposit feeder, did not significantly influence microbial abundances or microbial community structure. This species also only had a relatively minor impact on rates of oxygen and nitrogen cycling, presumably because porewater exchanges during burrow ventilation by this species were mainly restricted to sediments immediately surrounding the burrows. Collectively our analyses demonstrate that macrofauna with distinct bioturbation modes differ greatly in their impacts on microbial community structure and microbial metabolism in marine sediments. (contributed by L. Deng, 2023) |
|
|
|
Tidal Marsh Restoration on Sapelo Island: A Legacy of R.J. Reynolds, Jr., Eugene Odum and the University of Georgia Marine Institute Abstract - Restoration of tidal marshes throughout the 20th century have attempted to bring back important functions of natural tidal systems. In this study, vertical accretion, organic carbon (C) sequestration, and nitrogen burial were compared between a natural, never diked tidal salt marsh and a hydrologically restored tidal salt marsh on Sapelo Island, Georgia to examine the impacts of restoration years later. 64 years after hydrologic restoration in 1956, the restored marsh studied had higher rates of accretion based on 137Cs and 210Pb (4.8–5.1 mm/yr), C sequestration (118–125 g C/m2/yr) and N burial (8.3–8.8.g N/m2/yr) than the never diked marsh (2.9–3.4 mm/yr, 75–85 g C/m2/yr, 4.8–5.6 g N/m2/yr).Since maximum 137Cs deposition in 1964, approximately 30 cm of accretion has occurred in the restored marsh while the never diked marsh had approximately 10–30 cm of new soil deposited. The accumulated soil in the restored marsh was comparable to the natural marsh soil in terms of bulk density, percent C and N. However, below this depth, legacy effects from diking could be found through the higher soil bulk density and lower percent organic C and N relative to soils of the natural marsh.Vertical accretion in the natural marsh appears to be keeping pace with the current rate of sea level rise (SLR) (3.4 mm/yr) while accretion in the restored marsh exceeds SLR as the marsh compensates for subsidence that occurred when it was diked. Under current SLR and accretion rates, ecosystem functions of continual sequestration of C and burial of N will be supported. However, as SLR accelerates, the ability of both marshes to sequester C and bury N will depend on their ability to keep pace. If not, the marshes will eventually convert to mudflats or open water with a concurrent loss of these and other ecosystem services. (contributed by Christopher B. Craft, 2023) |
|
|