Home > Data > Data Search > Data Catalog > Data Set Summary | Update Metadata (contributor) | Copy as Template (GCE)
Files Jump to Files

GCE-LTER Data Set Summary

Accession: GIS-GCES-1401 Research Theme: Geospatial Analysis (Directed Study)
Contributors: Christine M. Hladik, Merryl Alber, Kristen Anstead, Nick Scoville
Title: June - December 2009 RTK survey of salt marsh plant ground elevations to assess the accuracy of a LIDAR-derived digital elevation model.
Abstract: Real time kinematic (RTK) GPS survey of ground elevations for six plant species (Spartina alterniflora, Juncus roemerianus, Batis maritima, Distichlis spicata, Salicornia virginica and Borrichia frutescens) and two non-vegetated cover classes (salt pan and intertidal mud) was carried out from June to December 2009 to assess the accuracy of a LIDAR-derived digital elevation model. In total, 1389 ground control points (GCP) were collected for the Duplin River (Sapelo Island) and Blackbeard Creek (Blackbeard Island) salt marshes.
DOI: 10.6073/pasta/819935a2f499612fcc6c749ce55920e4
Key Words: elevation, global positioning system, plant communities, plant species composition, Real Time Kinematic, RTK
LTER Core Area: Primary Production
Research Themes: Geospatial Analysis, Plant Ecology
Study Period: 06-Jun-2009 to 12-Jul-2009
Study Sites:
GCE-DP -- Duplin River, Georgia, USA
» Download Geographic Coverage: Google Earth
Species References: Batis maritima, Borrichia frutescens, Distichlis spicata, Juncus roemerianus, Salicornia virginica, Spartina alterniflora
Data References: GIS-GCES-1401a (RTK elevation survey data), GIS-GCES-1401b (LIDAR data), GIS-GCES-1401c (LIDAR data), GIS-GCES-1401d (Digital elevation model), GIS-GCES-1401e (Hyperspectral imagery), GIS-GCES-1401f (Hyperspectral imagery), GIS-GCES-1401g (Hyperspectral imagery classifications), GIS-GCES-1401h (NDVI images from hyperspectral imagery classifications)
Publications:

Schalles, J.F., Hladik, C.M., Nealy, N., Miklesh, D.M., Meile, C., Lynn, T. and O'Donnell, J. Presentation: A 35 year spatial-temporal analysis of serious Spartina alterniflora biomass declines in coastal Georgia. Impact of multiple disturbances on coastal ecosystem structure and function. Coastal and Estuarine Research Federation Biennial Meeting, November 4, 2019, Mobile, Alabama.

Hladik, C.M. and Alber, M. 2012. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sensing of the Environment. 121:234-235. (DOI: 10.1016/j.rse.2012.01.018)

Hladik, C.M., Schalles, J.F. and Alber, M. 2013. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sensing of the Environment. 139:318 - 330. (DOI: 10.1016/j.rse.2013.08.003)

O'Connell, J.L., Mishra, D., Alber, M. and Byrd, K.B. 2021. BERM: A belowground ecosystem resilience model for estimating Spartina alterniflora belowground biomass. New Phytologist. (DOI: 10.1111/nph.17607)

Downloads: Information

GIS Raster Data: GIS-GCES-1401_shp (Zip file containing shapefile of 2009 RTK)

Access: Public (released 01-Sep-2013)

Metadata: XML (Ecological Metadata Language)

Data Formats: Zip archive [103 KB]


Data Table: GIS-GCES-1401_table (Main data table for data set GIS-GCES-1401, 2438 records)

Access: Public (released 01-Sep-2013)

Metadata: Text (ESA FLED), XML (Ecological Metadata Language)

Data Formats: Spreadsheet (CSV) [275.40kb],  Text File [227.06kb],  MATLAB (GCE Toolbox) [898.86kb],  MATLAB (Variables) [876.55kb],  Text Report [253.50kb]

Column List:(display)

Statistics: Generate script code to retrieve data tables for analysis in: MATLAB, R, SAS, SPSS
Citation: Hladik, Christine M. 2013. June - December 2009 RTK survey of salt marsh plant ground elevations to assess the accuracy of a LIDAR-derived digital elevation model. Georgia Coastal Ecosystems LTER Project, University of Georgia, Long Term Ecological Research Network. http://dx.doi.org/10.6073/pasta/819935a2f499612fcc6c749ce55920e4

» Help about file formats, technical specifications and file versioning

LTER
NSF

This material is based upon work supported by the National Science Foundation under grants OCE-9982133, OCE-0620959, OCE-1237140 and OCE-1832178. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.